264 lines
7.3 KiB
PHP
264 lines
7.3 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2014-2020 Spomky-Labs
|
|
*
|
|
* This software may be modified and distributed under the terms
|
|
* of the MIT license. See the LICENSE file for details.
|
|
*/
|
|
|
|
namespace Jose\Component\KeyManagement\KeyConverter;
|
|
|
|
use function array_key_exists;
|
|
use Base64Url\Base64Url;
|
|
use function extension_loaded;
|
|
use function in_array;
|
|
use InvalidArgumentException;
|
|
use function is_array;
|
|
use Jose\Component\Core\JWK;
|
|
use Jose\Component\Core\Util\BigInteger;
|
|
use RuntimeException;
|
|
|
|
/**
|
|
* @internal
|
|
*/
|
|
class RSAKey
|
|
{
|
|
/**
|
|
* @var array
|
|
*/
|
|
private $values = [];
|
|
|
|
/**
|
|
* RSAKey constructor.
|
|
*/
|
|
private function __construct(array $data)
|
|
{
|
|
$this->loadJWK($data);
|
|
}
|
|
|
|
/**
|
|
* @return RSAKey
|
|
*/
|
|
public static function createFromKeyDetails(array $details): self
|
|
{
|
|
$values = ['kty' => 'RSA'];
|
|
$keys = [
|
|
'n' => 'n',
|
|
'e' => 'e',
|
|
'd' => 'd',
|
|
'p' => 'p',
|
|
'q' => 'q',
|
|
'dp' => 'dmp1',
|
|
'dq' => 'dmq1',
|
|
'qi' => 'iqmp',
|
|
];
|
|
foreach ($details as $key => $value) {
|
|
if (in_array($key, $keys, true)) {
|
|
$value = Base64Url::encode($value);
|
|
$values[array_search($key, $keys, true)] = $value;
|
|
}
|
|
}
|
|
|
|
return new self($values);
|
|
}
|
|
|
|
/**
|
|
* @throws RuntimeException if the extension OpenSSL is not available
|
|
* @throws InvalidArgumentException if the key cannot be loaded
|
|
*
|
|
* @return RSAKey
|
|
*/
|
|
public static function createFromPEM(string $pem): self
|
|
{
|
|
if (!extension_loaded('openssl')) {
|
|
throw new RuntimeException('Please install the OpenSSL extension');
|
|
}
|
|
$res = openssl_pkey_get_private($pem);
|
|
if (false === $res) {
|
|
$res = openssl_pkey_get_public($pem);
|
|
}
|
|
if (false === $res) {
|
|
throw new InvalidArgumentException('Unable to load the key.');
|
|
}
|
|
|
|
$details = openssl_pkey_get_details($res);
|
|
if (!is_array($details) || !isset($details['rsa'])) {
|
|
throw new InvalidArgumentException('Unable to load the key.');
|
|
}
|
|
|
|
return self::createFromKeyDetails($details['rsa']);
|
|
}
|
|
|
|
/**
|
|
* @return RSAKey
|
|
*/
|
|
public static function createFromJWK(JWK $jwk): self
|
|
{
|
|
return new self($jwk->all());
|
|
}
|
|
|
|
public function isPublic(): bool
|
|
{
|
|
return !array_key_exists('d', $this->values);
|
|
}
|
|
|
|
/**
|
|
* @param RSAKey $private
|
|
*
|
|
* @return RSAKey
|
|
*/
|
|
public static function toPublic(self $private): self
|
|
{
|
|
$data = $private->toArray();
|
|
$keys = ['p', 'd', 'q', 'dp', 'dq', 'qi'];
|
|
foreach ($keys as $key) {
|
|
if (array_key_exists($key, $data)) {
|
|
unset($data[$key]);
|
|
}
|
|
}
|
|
|
|
return new self($data);
|
|
}
|
|
|
|
public function toArray(): array
|
|
{
|
|
return $this->values;
|
|
}
|
|
|
|
public function toJwk(): JWK
|
|
{
|
|
return new JWK($this->values);
|
|
}
|
|
|
|
/**
|
|
* This method will try to add Chinese Remainder Theorem (CRT) parameters.
|
|
* With those primes, the decryption process is really fast.
|
|
*/
|
|
public function optimize(): void
|
|
{
|
|
if (array_key_exists('d', $this->values)) {
|
|
$this->populateCRT();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @throws InvalidArgumentException if the key is invalid or not an RSA key
|
|
*/
|
|
private function loadJWK(array $jwk): void
|
|
{
|
|
if (!array_key_exists('kty', $jwk)) {
|
|
throw new InvalidArgumentException('The key parameter "kty" is missing.');
|
|
}
|
|
if ('RSA' !== $jwk['kty']) {
|
|
throw new InvalidArgumentException('The JWK is not a RSA key.');
|
|
}
|
|
|
|
$this->values = $jwk;
|
|
}
|
|
|
|
/**
|
|
* This method adds Chinese Remainder Theorem (CRT) parameters if primes 'p' and 'q' are available.
|
|
* If 'p' and 'q' are missing, they are computed and added to the key data.
|
|
*/
|
|
private function populateCRT(): void
|
|
{
|
|
if (!array_key_exists('p', $this->values) && !array_key_exists('q', $this->values)) {
|
|
$d = BigInteger::createFromBinaryString(Base64Url::decode($this->values['d']));
|
|
$e = BigInteger::createFromBinaryString(Base64Url::decode($this->values['e']));
|
|
$n = BigInteger::createFromBinaryString(Base64Url::decode($this->values['n']));
|
|
|
|
[$p, $q] = $this->findPrimeFactors($d, $e, $n);
|
|
$this->values['p'] = Base64Url::encode($p->toBytes());
|
|
$this->values['q'] = Base64Url::encode($q->toBytes());
|
|
}
|
|
|
|
if (array_key_exists('dp', $this->values) && array_key_exists('dq', $this->values) && array_key_exists('qi', $this->values)) {
|
|
return;
|
|
}
|
|
|
|
$one = BigInteger::createFromDecimal(1);
|
|
$d = BigInteger::createFromBinaryString(Base64Url::decode($this->values['d']));
|
|
$p = BigInteger::createFromBinaryString(Base64Url::decode($this->values['p']));
|
|
$q = BigInteger::createFromBinaryString(Base64Url::decode($this->values['q']));
|
|
|
|
$this->values['dp'] = Base64Url::encode($d->mod($p->subtract($one))->toBytes());
|
|
$this->values['dq'] = Base64Url::encode($d->mod($q->subtract($one))->toBytes());
|
|
$this->values['qi'] = Base64Url::encode($q->modInverse($p)->toBytes());
|
|
}
|
|
|
|
/**
|
|
* @throws RuntimeException if the prime factors cannot be found
|
|
*
|
|
* @return BigInteger[]
|
|
*/
|
|
private function findPrimeFactors(BigInteger $d, BigInteger $e, BigInteger $n): array
|
|
{
|
|
$zero = BigInteger::createFromDecimal(0);
|
|
$one = BigInteger::createFromDecimal(1);
|
|
$two = BigInteger::createFromDecimal(2);
|
|
|
|
$k = $d->multiply($e)->subtract($one);
|
|
|
|
if ($k->isEven()) {
|
|
$r = $k;
|
|
$t = $zero;
|
|
|
|
do {
|
|
$r = $r->divide($two);
|
|
$t = $t->add($one);
|
|
} while ($r->isEven());
|
|
|
|
$found = false;
|
|
$y = null;
|
|
|
|
for ($i = 1; $i <= 100; ++$i) {
|
|
$g = BigInteger::random($n->subtract($one));
|
|
$y = $g->modPow($r, $n);
|
|
|
|
if ($y->equals($one) || $y->equals($n->subtract($one))) {
|
|
continue;
|
|
}
|
|
|
|
for ($j = $one; $j->lowerThan($t->subtract($one)); $j = $j->add($one)) {
|
|
$x = $y->modPow($two, $n);
|
|
|
|
if ($x->equals($one)) {
|
|
$found = true;
|
|
|
|
break;
|
|
}
|
|
|
|
if ($x->equals($n->subtract($one))) {
|
|
continue;
|
|
}
|
|
|
|
$y = $x;
|
|
}
|
|
|
|
$x = $y->modPow($two, $n);
|
|
if ($x->equals($one)) {
|
|
$found = true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (null === $y) {
|
|
throw new InvalidArgumentException('Unable to find prime factors.');
|
|
}
|
|
if (true === $found) {
|
|
$p = $y->subtract($one)->gcd($n);
|
|
$q = $n->divide($p);
|
|
|
|
return [$p, $q];
|
|
}
|
|
}
|
|
|
|
throw new InvalidArgumentException('Unable to find prime factors.');
|
|
}
|
|
}
|